If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+2x-9=0
a = 10; b = 2; c = -9;
Δ = b2-4ac
Δ = 22-4·10·(-9)
Δ = 364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{364}=\sqrt{4*91}=\sqrt{4}*\sqrt{91}=2\sqrt{91}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{91}}{2*10}=\frac{-2-2\sqrt{91}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{91}}{2*10}=\frac{-2+2\sqrt{91}}{20} $
| (6+3)+2x-6=15 | | 5(15+15y)15y=-15 | | 4.4=2a | | 10x^@-2=0 | | 15=a+11 | | 58=2-8e | | x+(x*1/10)=100 | | 4/p=16 | | 3x+(5x+2)=180 | | 7x+22=4x+55 | | n+(n+6)+140+151+62+135=720 | | -x+7-6x=18-7x | | 4m+3–3m+2=2 | | 48+(3x+6)=180 | | 8x−6=1 | | x/√2=√2 | | x/(2/3)=-9/2 | | −4x−7x=22 | | 3u=+4 | | 2(2x+-3)=x+9 | | (x)=(x+3)+(3x-5) | | 12+(-12+65)*x=1200 | | 22+3y=≥4 | | -5i+9=24 | | A(x)=(x+3)+(3x-5) | | 2i-3=1 | | (4y-(-2y-3)=9 | | -6i-5=13 | | 7w^2+9=121 | | 6i+4=+-26 | | z=9/6=z+7/3 | | 6i+4=+26 |